23 research outputs found

    Review of low-cost sensors for the ambient air monitoring of benzene and other volatile organic compounds

    Get PDF
    This report presents a literature review of the state of the art of sensor based monitoring of air quality of benzene and other volatile organic compounds. Combined with information provided by stakeholders, manufacturers and literature, the review considered commercially available sensors, including, PID based sensors, semiconductor (resistive gas sensor) and portable on-line measuring devices (sensor arrays). The bibliographic collection includes the following topics: sensor description, field of application in fixed, mobile, indoor and ambient air monitoring, range of concentration levels and limit of detection in air, model descriptions of the phenomena involved in the sensor detection process, gaseous interference selectivity of sensors in complex VOC matrix, validation data in lab experiments and under field conditions.JRC.C.5-Air and Climat

    Performance Evaluation of Low-Cost BTEX Sensors and Devices within the EURAMET Key-VOCs Project

    Get PDF
    The KEY-VOCs project is a EURAMET joint research project focused on key Volatile Organic Compounds (VOCs) in air. One of its activities is the evaluation of sensors-based measurement systems. In Europe, the monitoring of benzene in ambient air is mandatory as set by the European Directive for air quality (AQD) [1]. This Directive states that the reference method of measurement shall consist of active or on-line sampling followed by gas chromatography [2]. These methods are time consuming, expensive to implement and not easily portable prohibiting more local estimation of the population exposure. However, the AQD allows using indicative measurements with higher uncertainty than those of the reference methods. Sensor systems are good candidates for indicative methods with the additional ability of near-to real-time measurements

    Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds

    Get PDF
    This article presents a literature review of sensors for the monitoring of benzene in ambient air and other volatile organic compounds. Combined with information provided by stakeholders, manufacturers and literature, the review considers commercially available sensors, including PID-based sensors, semiconductor (resistive gas sensors) and portable on-line measuring devices as for example sensor arrays. The bibliographic collection includes the following topics: sensor description, field of application at fixed sites, indoor and ambient air monitoring, range of concentration levels and limit of detection in air, model descriptions of the phenomena involved in the sensor detection process, gaseous interference selectivity of sensors in complex VOC matrix, validation data in lab experiments and under field conditions

    EMC testing of electricity meters using real-world and artificial current waveforms

    Get PDF
    In 2015, the energy measurement of some static electricity meters was found to be sensitive to specific conducted electromagnetic disturbances with very fast current changes caused by highly nonlinear loads, leading to meter errors up to several hundred percent. This article describes new results on the electromagnetic compatibility (EMC) of 16 different meters from all over Europe when exposed to real-world disturbance signals. Those test signals were obtained from household appliances and onsite measurements at metered supply points all over Europe. The results show that also the interference signals recorded onsite can cause measurement errors as large as several hundred percent, even for meters that pass the present EMC standards. This unambiguously demonstrates that the present immunity testing standards do not cover the most disturbing conducted interference occurring in present daily-life situations due to the increased use of nonlinear electronics. Furthermore, to enable the adoption of potential new test waveforms in future standards for electricity meter testing, artificial test waveforms were constructed based on real-world waveforms using a piece-wise linear model. These artificial test waveforms were demonstrated to cause meter errors similar to those caused by the original real-life waveforms they are representing, showing that they are suitable candidates for use in improved standardization of electricity meter testing.Postprint (published version

    Impact of Imperfect Artefacts and the Modus Operandi on Uncertainty Quantification Using Virtual Instruments

    No full text
    The usage of virtual instruments (VIs) to analyze measurements and calculate uncertainties is increasing. Well-known examples are virtual coordinate measurement machines (VCMMs) which are often used and even commercially offered to assess measurement uncertainties of CMMs. A more recent usage of the VI concept is posed by the modeling of scatterometers. These VIs can be used to assess the measurement uncertainty after the measurement has been performed based on the real measurement data or prior to the measurement to predict the measurement uncertainty using a type of simulated measurement data. The research question addressed in this paper is to assess if this predicted uncertainty will be similar in magnitude to the calculated uncertainty based on the measurement data. It turns out that this is not necessarily the case. The main observation of this paper was that the uncertainty predicted by a VI can be highly sensitive to the chosen way of operating the VI. To amend this situation, a simple procedure was proposed that can be used prior to performing the real measurement and that is believed to produce a conservative prediction of the measurement uncertainty in most cases. This was verified in a case study involving the measurement of the asphericity of an imperfect sphere using a CMM, with the uncertainty calculated by means of a VCMM

    A generalized method for iterative error mining in parsing results

    No full text
    Error mining is a useful technique for identifying forms that cause incomplete parses of sentences. We extend the iterative method of Sagot and de la Clergerie (2006) to treat n-grams of an arbitrary length. An inherent problem of incorporating longer n-grams is data sparseness. Our new method takes sparseness into account, producing n-grams that are as long as necessary to identify problematic forms, but not longer. Not every cause for parsing errors can be captured effectively by looking at word n-grams. We report on an algorithm for building more general patterns for mining, consisting of words and part of speech tags. It is not easy to evaluate the various error mining techniques. We propose a new evaluation metric which will enable us to compare different error miners.

    Sensitivity of VOC Sensors for Air Quality Monitoring within the EURAMET Key-VOC project

    No full text
    The Air Quality Directive AQD sets the limit value for benzene at 5 µg/m³ over a calendar year which corresponds to the upper range of concentration measured in air quality monitoring. Currently, the sensitivity of sensors represents the major challenge for measuring benzene in the ppb range. In 2005, benzene levels in ambient air less than 100 ppb were out of the range of gas sensors. Nowadays, the technological progress resulted in an improvement of sensor sensitivity and a few systems are able to reach the ppb or more rarely sub ppb level of sensitivity for monitoring benzene. The information available for the sensitivity of gas sensors either commercially available or extracted from research studies are presented for photo ionisation detectors, metal oxide sensors, electrochemical cells, UV spectrometers, micro GCs and electronic noses.JRC.H.2-Air and Climat

    Performance Evaluation of Low-Cost BTEX Sensors and Devices within the EURAMET Key-VOCs Project

    Get PDF
    The KEY-VOCs project is a EURAMET joint research project focused on key Volatile Organic Compounds (VOCs) in air. One of its activities is the evaluation of sensors-based measurement systems. In Europe, the monitoring of benzene in ambient air is mandatory as set by the European Directive for air quality (AQD) [1]. This Directive states that the reference method of measurement shall consist of active or on-line sampling followed by gas chromatography [2]. These methods are time consuming, expensive to implement and not easily portable prohibiting more local estimation of the population exposure. However, the AQD allows using indicative measurements with higher uncertainty than those of the reference methods. Sensor systems are good candidates for indicative methods with the additional ability of near-to real-time measurements
    corecore